Join Us

How to Pick a Centrifugal Pump Part 5: Choosing a Single or Double ...

Author: Melody Liu

Aug. 18, 2025

How to Pick a Centrifugal Pump Part 5: Choosing a Single or Double ...

As a result, double suction pumps are also less vulnerable to the wear and tear caused by axial thrust, which occurs when water enters the impeller. Since water enters both sides of a double suction impeller, one side effectively cancels out the axial thrust of the other – assuming that flow is even on both sides. But since that is not always the case, double suction pumps have inboard and outboard bearings to absorb some of this load. These bearings can afford to be smaller than those on single suction pumps simply because there is better balance across the shaft of a double suction pump.

You will get efficient and thoughtful service from SGB.

Double or Single Suction?

We typically recommend a double suction pump design for HVAC applications around 2,000 GPM or an 8” pump size.  When it comes to applying a double suction pump we suggest:

(1) Selecting a pump with the shortest shaft span possible to minimize shaft deflections. 

(2) Specifying based-mounted pumps with flexible couplers whenever possible. These pumps are easier to service than double suction inline pumps, which require the motor to be removed to periodically replace worn out throttle bushings.  

Generally speaking, a double suction pump can be twice the cost of a comparable single suction design.  Obviously, pricing is positive when it comes to single suction pumps. They are also easier and less expensive to maintain.  On the other hand, double suction pumps last longer – as much as 30 years. The double suction design eliminates the axial forces on the impeller which allows for higher flows than single suction.

Different Types of Double Suction Pumps

When it comes to selecting a double suction pump, there are three types to choose from, including:

Back to Basics: Pump Types - End Suction Vs. Double Suction

By Allan R. Budris

There are often multiple pump types (Table 1) that can be selected for the same water application, with each pump type having its own strengths and weaknesses. This column tries to help guide the reader in the selection of the best pump type that will yield the greatest reliability and lowest life cycle cost for a specific application.

End Suction Water Pumps

An end suction water pump would probably have the lowest initial cost for most applications, with reasonable efficiency. However, these pumps do not follow any standards, especially with regard to bearing life, shaft seal housings and dimensional interchangeability. They are also typically constructed with the lowest cost materials, such as cast iron casings with bronze or brass impellers. The impellers are typically of closed construction, without replaceable casing or impeller wearing rings. Further, there is typically more deviation from published performance, such as efficiency, for this pump type.

For non-critical, intermittent service applications these pumps may be the best choice. However, for critical applications, requiring long operating life, the cost of maintenance and down time may far exceed any initial cost savings.

More Pump Tips

Do you enjoy Allan Budris's monthly Pump Tips column? Here are a few of his recent articles:

Back to Basics: Pump Factory Performance Tests

Selecting the Optimum Pump Control Valve to Save Substantial Wasted Energy Dollars

MBBR system to be installed at Chicago WTP; first of its kind in IL state

Back to Basics: How to Improve Vertical Turbine Pump Reliability through Optimum Bearing Selection

Pump Protection: The Pros and Cons of Various Centrifugal Pump Casing Types

Considerations for Designing Piping Adjacent to a Centrifugal Pump

Bearing Burdens: Reducing Lubrication Contaminants to Improve Bearing Life, Lifecycle Costs

For more information, please visit Double Suction Pump Manufacturer.

Power Precautions: Analyzing Pump Startup and Shutdown Best Practices

End Suction ANSI/ASME B-73 Pumps

Chemical pumps (figure 1), which can handle corrosive, and/or toxic liquids and slurries, are available in a variety of configurations and materials. Pumps used in this industry are different from those used in other industries, primarily in the materials of construction and the many mechanical shaft seal configurations available. These pumps must also meet the American Society of Mechanical Engineers ANSI B73 standards, which require dimensional interchangeability, minimum bearing life, and many other quality specifications. The minimum casing material is ductile iron, with stainless steel being quite common. Typical construction is an adjustable open impeller, which is also good at handling entrained air.

Because of these upgraded features, reliability focused users will typically select an ANSI/ASME B-73 pump over a lower cost water pump for other critical applications, including water services.

The principal reasons for the popularity of this between-bearing configuration include:

1. The rotor can be removed by just taking off the upper casing half, without disturbing the suction or discharge piping, or moving the motor

2. Less shaft deflection due to the between-bearing design.

3. Lower NPSH requirement due to the fact that each impeller eye only handles one half of the total pump flow rate.

4. Virtually no axial hydraulic thrust, due to the back-to-back / double suction impeller design.

5. Higher efficiency because power is not lost to balance the hydraulic thrust.

6. Relatively high allowable nozzle loads due to the rigidity of the lower portion of the casing.

Although split case, between-bearing models are quite popular, and have many advantages as listed above, the pumps are not without some drawbacks.

1. Due to the large flanges required for the split casing sealing joint, these pumps are normally heavier and cost more than comparable end suction pumps, especially in higher alloy and higher pressure applications.

2. While double-suction impeller pumps have lower NPSHr values then comparable end suction pumps, the through-shaft reduces the impeller eye area. This requires an increase in the suction eye diameter (higher eye tip speed and suction energy). Also, in order to keep the shaft bearing span to a minimum for critical speed purposes, the compressed inlet passages result in tight turns for the liquid entering the impeller eye. The gating Suction Energy and required NPSH margins tend to increase as a consequence. This phenomenon has caused field problems with high and very high suction energy pumps, when operating at low NPSH margins and/or when operating in suction recirculation (See October column). It should be noted that some of the newer split case pumps do have improved casing inlet designs (less inlet turbulence), which allows them to approach the higher suction energy performance (gating values) of end suction pumps.

3. Double-suction pumps are more sensitive to the orientation and geometry (radius) of elbows in front of the pump inlet (see April column). Suction elbows should be perpendicular to the plan view of the shaft. This reduces the tendency of unequal flow quantities reaching the two impeller eyes. Suction elbows in the plan of the shaft can cause uneven flow patterns which can upset the axial thrust balance, causing high bearing loads and shorter bearing life. Uneven flows to each impeller eye also tends to increase the NPSHR, and/or potentially put one half of the impeller into suction recirculation.

4. Between-bearing pumps need two shaft seals, whereas only one seal assembly is required for an end suction pump. This could increase both initial and maintenance costs in services that require expensive mechanical seals.

5. The axial split complicates the radial gasket sealing and can result in the mismatch of the casing halves at the joint.

6. This construction also limits the mechanical seal chamber options, since most split case pumps have the stuffing boxes integral with the casing halves.

The company is the world’s best Horizontal Single-Case Pump supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

6

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)

0/2000